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DAM-BREAK FLOWS OVER A BOTTOM STEP

UDC 519.63V. V. Ostapenko

A single-layer shallow-water model is used to study the solvability of the problem of flows generated
by dam break over a bed level discontinuity in the form of a step onto which water flows. Solutions
in which the total flow energy is conserved on the step and solutions in which the energy is lost on
the step are considered.
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1. Formulation of the Problem. In the case of a rectangular channel of constant width and variable
depth, the differential single-layer shallow-water equations (Saint Venant equations) [1, 2] ignoring the friction effect
are written as

ht + qx = 0, qt + (qv + h2/2)x = −hbx, (1.1)

where h(x, t), q(x, t), and v = q/h are the flow depth, rate, and velocity and b(x) is the bed level. The acceleration
of gravity g = 1. For system (1.1), we consider the problem of decay of an initial level discontinuity z = b+ h

z(x, 0) =
{
z0, x > 0,
z1, x < 0,

z1 > z0 (1.2)

over a sudden change in bed level

b(x) =
{
δ, x > 0,
0, x < 0,

δ > 0 (1.3)

in water initially at rest:

v(x, 0) = 0. (1.4)

Because z1 > z0, it follows that q(0, t) > 0 at t > 0 and in the nomenclature adopted in [3], the discontinuity
(1.3) is a bottom step on which water flows. In addition, taking into account that the problem of discontinuity
decay (1.1), (1.2), (1.4) over an even bottom is called the dam break problem [4], we shall call problem (1.1)–(1.4)
the problem of dam break over a bottom step. Furthermore, the exact solution at the discontinuity (1.3) at the
point x = 0− 0 will be called flow ahead of the step, and that at the point x = 0 + 0 will be called flow at the step.
The solution at x < 0 will be called flow on the left of the step, and the solution at x > 0, flow on the right of the
step.

Problem (1.1)–(1.4) is a particular case of the general problem of arbitrary discontinuity decay over a sudden
change in bed level, which was studied in [5], where various examples of its solution are given assuming that at
the discontinuity (1.3), the total flow energy is conserved. However, in [5], the uniqueness of these solutions was
not studied and the regions of their existence were not distinguished. Problem (1.1)–(1.4) with δ < 0 for the
case of a bed level discontinuity in the form of a step from which water flows down was investigated in [6] within
the framework of theoretical analysis of hydraulic processes arising from break of a flight ship lock-gate. Problem
(1.1)–(1.4) was also studied in [7] using the assumption that the total flow energy at the discontinuity (1.3) is
conserved. However, in [7], the one-valued solvability of this problem was shown only approximately by numerical
calculations, which indicate strict monotonicity of the corresponding functional dependence.
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The goal of the present work is to analyze the one-valued solvability of the discontinuity decay problem
(1.1)–(1.4) assuming both that the total flow energy is conserved after passage through the bottom step and that
it is lost at it. In the analysis, we use the results obtained in studies of discontinuity decay in shallow water over a
horizontal bottom [8], gas-dynamic discontinuity decay at a sudden change in pipe cross-sectional area [9, 10], and
permissible steady flows at the discontinuity (1.3) [7].

Before solving problem (1.1)–(1.4), we recall how to prove the one-valued solvability of the classical discon-
tinuity decay problem over a horizontal bottom b(x) = const:

h(x, 0) =
{
h0, x > 0,
h1, x < 0,

v(x, 0) =
{
v0, x > 0,
v1, x < 0.

(1.5)

2. Solution of the Classical Problem of Arbitrary Discontinuity Decay. In [8], the arbitrary
discontinuity decay problem (1.1), (1.5) for bx = 0 is solved by analogy with the gas-dynamic case [11] using s- and
r-adiabats. The s-adiabat passing through initial state h0, v0 is a function

v = vs(h, h0, v0) = v0 + a(h, h0), (2.1)

and the r-adiabat passing through initial state h1, v1 is a function

v = vr(h, h1, v1) = v1 − a(h, h1), (2.2)

where

a(h, hi) =
{ √

(h+ hi)/(2hhi)(h− hi), h > hi,
2(
√
h−
√
hi ), h 6 hi.

(2.3)

For h > hi, the equations of the adiabats (2.1)–(2.3) obtained from the Hugoniot conditions

D[h] = [q], D[q] = [qv + h2/2] (2.4)

(D is the shock-wave velocity and [f ] is a discontinuity of the function f at the shock-wave front) relate the initial
values of hi, and vi ahead of a discontinuous wave front to the possible states h, v behind its front. For h < hi,
these equations, obtained from the conditions

s = v + 2c = const, r = v − 2c = const (2.5)

(c =
√
h is the speed of propagation of small perturbations in stationary water) relate the initial values of hi and

vi ahead of a centered depression wave to the possible states h, v behind it. The Hugoniot conditions (2.4) are
obtained from the laws of conservation of mass and total momentum (1.1), and conditions (2.5) follow from the
constancy of the s-invariant in an r-depression wave and constancy of the r-invariant in an s-depression wave [11].

The one-valued solvability of the classical discontinuity decay problem (1.1), (1.5) follows from a monotonic
increase in the s-adiabat (2.1) and a monotonic decrease in the r-adiabat (2.2) (see [8]), which generally results in the
formation of a simple s-wave propagating over background h0, v0 and a simple r-wave propagating over background
h1, v1; this wave are joined by a constant flow region. In particular, in the solution of the classical problem of
dam-break flow (1.1), (1.2), (1.4) over a horizontal bottom b(x) = const, a discontinuous s-wave propagates over
background h0, v0 and a centered r-depression wave propagates over background h1, v1.

In the solution of the generalized problem of discontinuity decay over a step (1.1)–(1.4), the resulting flow
pattern is more complicated but, as shown in [10], the graphical method of adiabats is also effective in such cases.
To employ this method, it is first necessary to specify relations that govern flow parameters on both sides of the
discontinuity (1.3).

Let us assume that at the discontinuity (1.3), the laws of conservation of mass and local momentum

ht + qx = 0, vt + (v2/2 + z)x = 0, (2.6)

and, hence, the law of total energy conservation are satisfied [7]. From relation (2.6), it follows that the flow rate
and the Bernoulli constant are constant at the step:

[q] = 0, [v2/2 + z] = 0. (2.7)

This implies that for evolution [2, 12] of a fixed discontinuity over a step, it is necessary that two characteristics come
to the discontinuity and two characteristics go strictly out from it (the characteristics propagating at zero velocity
along the discontinuity line (1.3) are included in the number of incoming characteristics and are not included in
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the number of strictly outgoing characteristics). In [7], it is shown that within the framework of such evolutionary-
steady discontinuous solutions, the flow depth H and velocity V ahead of the step are uniquely determined from
their values h and v at the step. In this case, the bed level discontinuity (1.3) in the shallow-water model corresponds
to a transition zone [−ε, ε] of a rather fast but smooth and monotonic change in the bed level of an actual channel
(see [7, Secs. 4 and 5]).

3. Conservation of the Monotonicity of the Function v(h) with Passage through a Bottom Step.
We consider a one-parameter family of steady discontinuous solutions with depths and velocities h and v(h) at the
step and H(h) and V (h) ahead of it. We elucidate under what conditions the monotonicity of the function v(h) leads
to the monotonicity of the functions H(h) and V (h) and, hence, the monotonicity of the function Ṽ (H) = V (h(H))
[h(H) is a function that is the reverse of H(h)].

Theorem 1. If a function v(h) satisfying the conditions v > 0 and vh > 0 takes values in the subcritical
and critical flow region v 6

√
h (in the supercritical flow region, v >

√
h), then the functions H(h) and V (h)

corresponding to it satisfy the inequalities

Hh > 0, V > 0, Vh > 0 ⇒ ṼH > 0,

and the function V = Ṽ (H) takes values in the subcritical flow region V <
√
H (in the supercritical flow region,

V >
√
H ).
Proof. The proof of Theorem 1 starts with proving the inequality Hh > 0. The Hugoniot conditions (2.7)

lead to the relation

J(H, q) = J(h, q) + δ, (3.1)

in which

J(H, q) = q2/(2H2) +H, J(h, q) = q2/(2h2) + h, q = hv = HV.

Since the total differential of Eq. (3.1) can be written as

α1 dH = α0 dh+ (v/h− V/H) dq,

where

α0 = Jh(h, q) = 1− v2/h, α1 = JH(H, q) = 1− V 2/H, (3.2)

then, taking into account that the flow on the left of the discontinuity (1.3) cannot be critical [7] and, hence, α1 6= 0,
we obtain

Hh =
1
α1

(
α0 +

( v
h
− V

H

)
qh

)
=

1
α1

(
α0 +

q(H2 − h2)
h2H2

qh

)
, (3.3)

where

qh = (hv)h = v + hvh. (3.4)

By the condition of Theorem 1, v > 0 and vh > 0,; therefore, taking into account (3.4), we have q > 0 and qh > 0.
Consequently, for the permissible flow configurations at the step obtained in [7], for the first of which,

H > h+ δ, α1 > 0, α0 > 0, (3.5)

and for the second,

H < h, α1 < 0, α0 6 0, (3.6)

from (3.3), we have Hh > 0.
To determine the sign of the derivative Vh, we write it as

Vh = (q/H)h = (Hqh − qHh)/H2.

From this, taking into account (3.3) and then (3.2) and (3.4), we obtain

Vh = ((α1H + V 2 − v2)qh − α0q)/(α1H
2)

= ((H − v2)qh − α0q)/(α1H
2) = ((H − h)qh + α0h

2vh)/(α1H
2). (3.7)
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Since vh > 0 and qh > 0, from formula (3.7) it follows that Vh > 0 both under conditions (3.5), where the values of
the function Ṽ (H) belong to the subcritical flow region and under conditions (3.6), where the values of the function
Ṽ (H) belong to the supercritical flow region. Thus, Theorem 1 is proved.

As is shown in [7], each shock s-adiabat

vs(h, h0, 0) = a(h, h0) =
√

(h+ h0)/(2hh0)(h− h0) (3.8)

issuing from the point h0 on the axis h (Fig. 1) intersects the critical flow curve v =
√
h at a single point

A2 = (x∗h0,
√
x∗h0), where

x∗ = 1 +
4√
3

cos
(1

3
arccos

3
√

3
8

)
≈ 3.214 (3.9)

is the maximal root of the cubic equation x3 − 3x2 − x+ 1 = 0. Therefore, by virtue of Theorem 1, upon passage
through the step, the subcritical part A1A2 of this adiabat is mapped into the monotonic curve shown in Fig. 1 by the
curve B1B2, lying in the subcritical flow region, and its supercritical part A2A3 is mapped into the monotonic curve
shown in Fig. 1 by the curve B3B4 lying in the supercritical flow region. In this case, the transition A1A2 → B1B2

corresponds to configuration (3.5) and the transition A2A3 → B3B4, to configuration (3.6). The critical flow line
v = vc(h) =

√
h is mapped into the monotonic curve shown in Fig. 1 by the curve C1B2C2, located in the subcritical

flow region.
4. Solvability of the Discontinuity Decay Problem (1.1)–(1.4). The one-valued solvability of the

discontinuity decay problem (1.1)–(1.4) under conditions (2.7) at the bottom step follows from a monotonic decrease
in the wave r-adiabat

vr(h, h1, 0) = −a(h, h1) = 2(
√
h1 −

√
h) (4.1)

issuing from the point h1 > z0 = h0 + δ on the axis h (Fig. 2) and a monotonic increase in the piecewise smooth
curve B1B2C, whose segment B1B2 is the image of the subcritical part A1A2 of the shock s-adiabat (3.8) and the
segment B2C is the image of the part of the critical flow line v =

√
h located to the right of the point A2, i.e., at

h > h∗0 = x∗h0.

We use h∗1 to denote the point on the axis h which is the origin of the r-adiabat (4.1) going to the point B2

of inflection of the curve B1B2C. Then, for h1 ∈ (z0, h
∗
1], the r-adiabat (4.1) intersects this curve on the segment

B1B2, resulting in the formation of the flow pattern shown in Fig. 5a in [7]. In this case, the depression wave
R corresponds to the segment D̄B̄ of the wave r-adiabat (4.1), the discontinuity L at the step corresponds to the
shock transition B̄Ā along the hyperbola v = q̄/h, and the discontinuous wave S corresponds to the segment ĀA1 of
the shock s-adiabat (3.8). At h1 > h∗1, the r-adiabat (4.1) intersects the curve B1B2C on the segment B2C, which
results in the formation of the flow pattern shown in Fig. 5b in [7]. In this case, the depression wave R located on
the left of the step corresponds to the segment D̃C̃ of the wave r-adiabat (4.1), the discontinuity L corresponds to
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the shock transition C̃Ẽ, the depression wave R1 located on the right of the step corresponds to the segment ẼÃ
of the wave r-adiabat (2.2) issuing from the point Ẽ, and the discontinuous wave S corresponds to the segment
ÃA1 of the shock s-adiabat (3.8). In this case, the flow on the right of the step is obtained by solving the classical
discontinuity decay problem with initial data lying at the points A1 and Ẽ in Fig. 2.

The point h∗1 separating the two indicated flows is determined as follows. First, using the formulas

h2 = x∗h0, v2 =
√
h2 =

√
x∗h0, (4.2)

where x∗ is given by relation (3.9), we obtain the coordinates of the point A2 of intersection of the shock s-adiabat
(3.8) and the critical flow line v =

√
h. Then, using the formulas

h3 = a
(

1 + 2 cos
(1

3
arccos

a3 − q2/4
a3

))
, v3 =

q

h3
, (4.3)

where
a = (v2

2 + 2z2)/6, q = h2v2, z2 = h2 + δ (4.4)

(these formulas are obtained in [7]), we find the coordinates of the point B2 into which the point A2 is mapped
upon passage through the step. Finally, from the formula following from (4.1)

h∗1 = (
√
h3 + v3/2)2 (4.5)

we calculate the coordinate of the point D2 which is the origin of the wave r-adiabat (4.1) passing through the
point B2.

5. Method of Adiabats Using the Flow Rate q and Bernoulli Constant Q as Variables. In the
method of adiabats used for the equations of gas dynamics [11], the pressure p and velocity v are variables which are
continuous at a discontinuity. Similarly, in solving the generalized discontinuity decay problem (1.2)–(1.4) for the
shallow water equations (1.1), the method of adiabats is conveniently applied using the flow rate q and Bernoulli
constant Q = v2/2 + z as variables which remain continuous at the discontinuity over the step (1.3). A similar
approach is used in [8] in solving the problem of decay of a boundary discontinuity over an even bottom. To apply
this approach to the solution of problem (1.1)–(1.4), one needs to show that the shock s-adiabat (3.8) and the wave
r-adiabat (4.1) remain monotonic when written as the functions

q = qs(Q, z0), q = qr(Q, z1), (5.1)

where z0 and z1 are the initial levels included in formula (1.2).
Theorem 2. Each positive monotonically increasing function v(h) going out of the points h0 > 0 on the

axis h can be written as a function q = q̃(Q) which is strictly monotonically increasing for Q > z0 = h0 + δ.

Proof. If the function v(h) satisfies the condition

v > 0, vh > 0 ∀h > h0 > 0, v(h0) = 0,

the corresponding functions

q(h) = hv(h), Q(h) = v2(h)/2 + h+ δ

satisfy the conditions

q > 0, qh > 0, Qh > 0 ∀h > h0.

This implies that for Q > z0 = h0 + δ > 0, a function h(Q) that is the reverse of Q(h) is defined and, hence, a
function q̃(Q) = q(h(Q)) is defined such that

q̃ > 0, q̃Q = qh/Qh = (v + hvh)/(1 + vvh) > 0 ∀Q > z0, q̃(z0) = 0.

Theorem 2 is proved.
From Theorem 2, it follows that the shock s-adiabat (3.8) and the critical flow line v =

√
h are plotted on

the plane of the variables (Q, q) as curves of strictly monotonically increasing functions q = qs(Q) and q = qc(Q),
which are presented in Fig. 3.

In contrast to the monotonically increasing functions, the monotonically decreasing functions v(h) generally
lose the monotonicity property when written in the variables Q and q. For example, the monotonically decreasing
linear function v = 1− h written as

q = h(1− h), h =
√

2(Q− δ)− 1
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becomes monotonically increasing for h ∈ (0, 1/2) ⇔ Q ∈ (δ + 1/2, δ + 5/8) and remains monotonically decreasing
for h ∈ (1/2, 1) ⇔ Q ∈ (δ + 5/8, δ + 1). In spite of this, for the wave r-adiabats (4.1), the following formula holds:

q̃Q =
qh
Qh

=
1 + vr(vr)h
vr + h(vr)h

=
1− 2(

√
h1 −

√
h)/
√
h

2(
√
h1 −

√
h)− h/

√
h

= − 1√
h
< 0.

By virtue of this, the adiabat remains monotonically decreasing when written in the variables Q and q.

From the monotonicity of adiabats (5.1), it follows that the one-valued solvability of the discontinuity decay
problem (1.1)–(1.4) can be shown in the variables Q and q. Depending on whether the adiabats (5.1) intersect in
the subcritical or supercritical region (points Ā and Ã in Fig. 3) the flow that arises has the form shown in [7,
Fig. 5a or Fig. 5b]. The shock transitions over the step shown by the curves B̄Ā and C̃Ẽ in Fig. 2 are concentrated
at the points Ā and C̃ in Fig. 3.

6. Discontinuity Decay Problem (1.1)–(1.4) with Energy Loss at the Bottom Step. As noted
in [7], the over shallow- water model with conditions (2.7) at the discontinuity (1.3), leading to conservation of the
total flow energy at the step, generally describes actual flows for which the discontinuity (1.3) simulates a transition
zone of rather fast but smooth and monotonic change in the bed level of an actual channel. At the same time, it is
of interest to analyze the possibility of using the shallow water model to describe flows over bed level discontinuities
in actual channels in the case where the total energy of the flow at the step (1.3) is not conserved. In this case,
only the law of conservation of mass is satisfied at the discontinuity (1.3) [q] = 0. To close the conditions at such
a discontinuity, it does not suffice to specify characteristics that arrive at it; one needs to specify one more scalar
relation or the presence of the third incoming characteristic.

Let us first assume that two characteristics arrive at the discontinuity (1.3), where [Q] 6= 0,; then it is
necessary to specify one more scalar relation at the discontinuity. In this situation, in studies of gas-dynamic
flows in a pipe with a sudden change in cross-sectional area [9, 10], the nondivergent equation of total momentum,
was used as the additional relation at the cross-section discontinuity, in which the response of the wall between
pipelines of different diameters was taken into account for various physical reasons (beyond the scope of the purely
one-dimensional model).

We apply a different approach in which the second relation at the is the modified energy balance equation
(3.1)

σJ(H, q) = J(h, q) + δ, (6.1)

whose left side contains the heuristic parameter σ ∈ (0, 1] representing the part of the total flow energy conserved
upon transition through the discontinuity (1.3). An advantage of this approach is that it is a direct generalization
of the above case with conservation of total energy at the step. The specific value of the parameter σ should be
chosen by analyzing the fine structure of the flow in the neighborhood of an actual step, which is impossible within
the framework of the shallow-water model. We assume, therefore, that the parameter σ included in condition (6.1)

500



h0 z0 z0/s

B1 B1A1

A2

vcvs

B2

B2
C

C

v

h0 d d/s

Fig. 4

is known beforehand; bearing this in mind we analyze the solvability of the generalized discontinuity decay problem
(1.1)–(1.4).

Because (6.1) leads to
q2 = 2h2H2(σH − h− δ)/(H2 − σh2)

it follows that at the discontinuity (1.3), only those flows are possible for which

(σH − h− δ)(H −
√
σh) > 0.

This inequality distinguishes two permissible flow configurations over the step, for the first of which,
H > (h+ δ)/σ, V 2 < H, (6.2)

and for the second,
H <

√
σh, V 2 > H. (6.3)

Here V 2 = 2h2(σH − h− δ)/(H2 − σh2) is the square of the flow velocity ahead of the step.
Just as in [7], it is possible to show that within the framework of steady discontinuous solutions for which

two characteristics arrives at the discontinuity (1.3), Eq. (6.1) is uniquely solvable for H at h > 0 and for h at H,
such that the inequality J(H, q) = q2/(2H2) + H > δ/σ is satisfied. If q > 0, the flow at the step is subcritical or
critical (v2 6 h) in the case of conditions (6.2) and is supercritical (v2 > h) in the case of conditions (6.3). In view
of this, for steady flows over a bottom step, Theorem 1 is valid. To prove this theorem for σ < 1, it suffices to note
that in the case of the energy relation (6.1) formulas (3.3) and (3.7) become

Hh =
1
σα1

(
α0 +

q(H2 − σh2)
h2H2

qh

)
, Vh =

(σH − h)qh + α0h
2vh

σα1H2
.

By virtue of this, the positiveness of the derivatives Hh and Vh (as for σ = 1) directly follows from the fact that
the inequalities α1 > 0 and α0 > 0 hold under condition (6.2) and the inverse inequalities α1 < 0 and α0 6 0 hold
under conditions (6.3). From this it follows that the subcritical part A1A2 of the shock s-adiabat (3.8) and the part
of the critical flow line v =

√
h located to the right of the point A2 (see Figs. 1 and 4) are transferred by relation

(6.1), where σ < 1, into the monotonically increasing curves shown in Fig. 4 by the curve B̄1B̄2, lying to the right
of the curve B1B2, and the curve B̄2C̄, located below the curve B2C.

If the inequality
h1 > (h0 + δ)/σ ⇐⇒ z1 > z0/σ (6.4)

holds, the one-valued solvability of the discontinuity decay problem (1.1)–(1.4) subject to condition (6.1) at the
bottom step follows from a monotonic increase of the piecewise smooth curve B̄1B̄2C̄ in Fig. 4 and a monotonic
decrease in the wave r-adiabat (4.1). If

h0 + δ < h1 6 (h0 + δ)/σ ⇐⇒ z0 < z1 6 z0/σ, (6.5)

this problem has no solution.
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To obtain the a plot of the adiabats corresponding to condition (6.4), the curve B1B2C in Fig. 2 obtained
for σ = 1, should be replaced by the curve B̄1B̄2C̄ (see Fig. 4) obtained for σ < 1. From this it follows that as
in the case of σ = 1, for σ < 1, the discontinuity decay problem (1.1)–(1.4) admits two types of solutions (see [7,
Fig. 5a and b]). The coordinate h∗1(σ) of the point D2 in Fig. 2 separating these two types of flows is calculated from
formulas (4.2)–(4.5), in which for σ < 1, the parameter a included in (4.3) should be written as a = (v2

2 +2z2)/(6σ2);
in this case, the function h∗1(σ) is monotonically decreasing and

lim
σ→0

h∗1(σ) = +∞.

7. Steady Flows in the Case of Three Characteristics Arriving at a Discontinuity Line over
a Bottom Step. If three characteristics arrive at a discontinuity line that arises over a step, the condition of
continuity of the flow rate [q] = 0 is sufficient to close the conditions at such a discontinuity; furthermore, these
conditions uniquely define the part of the total flow energy lost upon passage through the step. We note that a
similar situation arises in the solution of the problem of decay of a boundary discontinuity over an even bottom [8].

For q > 0, in order that three characteristics arrive at the discontinuity (1.3), it is necessary that the flow
(H,V ) ahead of the step be supercritical or critical (V >

√
H) and the flow (h, v) at the step be subcritical or

critical (v 6
√
h). The fields of characteristics corresponding to these cases are shown in Fig. 5. In the solution of

the discontinuity decay problem (1.1)–(1.4), an r-depression wave (denoted in Fig. 6 by letter R) propagates to the
left of the bottom step. The flow on the right of this wave can be subcritical or critical; the critical flow behind the
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wave R forms only when its right boundary is adjacent to the discontinuity L over the step, forming with it a single
wavy LR jump. Thus, in the case considered, the flow ahead of the step is critical. Since its parameters h3 and v3

are uniquely determined as the coordinates of the point F (Fig. 7) at which the critical flow line v = vc(h) =
√
h

intersects the wave r-adiabat (4.1), they can be calculated from the formulas

h3 = (4/9)h1, v3 =
√
h3 = (2/3)

√
h1.

Since the flow at the step cannot be supercritical, its parameters h2 and v2 belong to the part of the hyperbola

v = q3/h, q3 = h3v3 (7.1)

that issues from the point F in Fig. 7 into the subcritical flow region; for the energy stability of the discontinuity L,
related to the loss of total energy at it, the point corresponding to these parameters should lie on hyperbola (7.1)
to the right of the point B1, at which it intersects the curve C1C2, which is the image of the critical flow line
vc(h) upon transition through the discontinuity L subject to the condition of total energy conservation [Q] = 0.
This implies that the flow (h2, v2) is subcritical, and, therefore, in the case considered, the steady flows at the step
correspond to the field of characteristics shown in Fig. 5c. In this case, the coordinates (h∗, v∗) of the point B1 are
determined from the formulas

h∗ = a
(

1 + 2 cos
(1

3
arccos

a3 − q2/4
a3

))
, v∗ =

q

h∗
,

where a = (v2
3 + 2(h3 + δ))/6 and q = h3v3.

Since the flow h2, v2 is subcritical, only a discontinuous s-wave (denoted by letter S in Fig. 6) can propagate
to the right of the step. The parameters h2 and v2 of the constant flow between the discontinuity L and the discon-
tinuous wave S are uniquely determined as the coordinates of the point B of intersection (Fig. 7) of hyperbola (7.1)
and the shock s-adiabat (3.8) issuing from the point A on the axis h. In this case, the coordinate h0 of the point A
should satisfy the condition

h0 ∈ (h∗0, h1 − δ), (7.2)

where h∗0 = x∗h∗ is the coordinate of the point A1, which is the origin of the shock s-adiabat vs(h, h∗0, 0) passing
through the point B1 (Fig. 7). The value x∗ ∈ (0, 1) is a root of the cubic equation

x3 − x2 − (2f2 + 1)x+ 1 = 0

and is calculated from Cardano’s formula

x∗ =
1
3

(
2p cos

(1
3

(
2π − arccos

9f2 − 8
p3

))
+ 1
)
,

where p =
√

6f2 + 4 and f = v∗/
√
h∗. Condition (7.2) imposes constraint on the initial depths h0 and h1 and the

step height δ, for which the problem (1.1)–(1.4) admits the steady solutions shown in Fig. 6.
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Conclusions. The present study shows the one-valued solvability of the generalized problem of discontinuity
decay (1.1)–(1.4) under the assumption that the total energy of the flow at the bottom step is conserved. For
experimental verification of the self-similar solutions obtained in this case, V. I. Bukreev and A. V. Gusev, researchers
from the Laboratory of Experimental Applied Hydrodynamics of the Institute of Hydrodynamics, Siberian Division,
Russian Academy of Sciences, performed a series of experiments in which the step (1.3) was modeled by a segment
of monotonic linear rise in bed level and the initial level discontinuity (1.2) was produced by a shield located ahead
of this rise. The experiments showed good agreement between theoretical and experimental data on the speed of
propagation of discontinuous s-waves and the asymptotic depth behind the wave front. These experimental results
will be published.

In the present work, we constructed two classes of solutions of problem (1.1)–(1.4) for which the total energy
of the flow over the step is lost. For solutions of the first class (see Sec. 6), for which two characteristics arrive at
the discontinuity L over the step, closure of the model requires introducing a heuristic parameter σ that specifies
the part of the total flow energy conserved with passage through the step. The solutions obtained for this case
are qualitatively similar to those obtained for the case of conservation of total energy at the discontinuity (1.3); in
particular, in the case of flow onto the step, the water line always drops (see [7, Fig. 5]).

In contrast to solutions of the first class, solutions of the second class (see Sec. 7), for which three character-
istics arrive at the discontinuity line L, are uniquely determined within the framework of the shallow- water model
without using any heuristic parameters. These solutions differ qualitatively from the solutions with conservation of
total energy at the discontinuity (1.3) because they always involve an increase in the level of the fluid flowing onto
the step (see Fig. 6). Formally, both classes of solutions can exist for the same initial data (1.2)–(1.4). Therefore,
for their separation in laboratory experiments, one needs to study the fine flow structure in the neighborhood of
an actual step when simulating the dam-break process by fast removal of the shield separating liquids of different
levels.

It can be assumed that if the shield is sufficiently thin, its removal gives rise to flows of the first class. If the
shield has finite width on the axis x and, being adjacent to the step, is completely located in the region x < 0, fast
removal of the shield can give rise to flows of the second class. For this, it is necessary that the liquid velocity on
the right boundary of the depression wave propagating over background z1 reach the critical value when filling the
hole that arises on the left of the step.

It should be noted that, formally, steady solutions of the second class can exist not only at z1 > z0 but also
at z1 < z0 and even at h1 < h0. In Fig. 7, the adiabats of one of such flows are shown by the curves DF and B2A2

If such paradoxical (in a sense) flows occur, decay of the discontinuity (1.2)–(1.4) will cause the liquid to propagate
toward the higher rather than the lower initial level. Corresponding laboratory experiments are required to verify
the existence of such flows.
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